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When working out the effect of earthquakes on hydraulic dams only the 
stresses caused by the free vibrations of the dam are taken into account 
[ 1 1. It is evident, however, that when there is an earthquake the water 
exerts an additional dynamic pressure on a dam. An attempt has been made 
to take this into account in [ 2 ] and 13 I, but the boundary conditions 
have only been satisfied approximately, i.e. the surface wave on the 
liquid has been neglected. and the displacement of the dam has not been 
taken into account in satisfying the boundary conditions on it. In this 
article the problem of determining the dynamic pressure is handled with 
greater precision. It is demonstrated that the additional dynamic pres- 
sure cannot be neglected, for in some cases it exceeds the hydrostatic 
pressure, especially in the upper sections of the dam. 

We assume that a dam is located in the plane x = Ue sino t in a rec- 
tangular coordinate system X, y, 3. A portion of the space, bounded by 

x,Uo sinwt- h<y&O, --oo dzd00, is filled with liquid. We will 
deal with the wave motion and the dynamic fluid pressure caused by an in- 
stantaneous initial velocity V, acquired by the dam as a result of an 
earthquake, i.e. a velocity V,, is induced impulsively on the fluid by 
the dam at x = 0. t = 0. Then the dam oscillates according to 
v= v* coswt. 

It is evident that in the study of liquid waves and dynamic pressures 
arising therefrom, the influence of the deflection of the dam is negfi- 
gibly small. If, therefore, we denote the velocity potential in the fluid 

as $(x8 Y, tf and assume the liquid incompressible and its free surface 
to be the first to come to rest, we can state the initial conditions of 
the problem thus: 

Gcy tn. 0. 0) _- - _..__ ___ = 0 
Ill 

acp (0, ?1. 0) _1 ,. 
ifr 0 (1) 
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and the boundary conditions 

(2) 

(3) 

Fig. 1. 

where I/,, V, are displacement and 
velocity amplitudes of the dam vibra- 

tion, respectively. 

The velocity potential of the re- 

quired solution should satisfy the 

LaPlace equation A$ = 0 and also the above conditions. We assume the 

velocity potential +(z, y, t) to satisfy the Laplace equation in this 
form 

CQ 

Cp (Cc, ?/, f) 7: COS O)f 
i\ 

’ [ .,1 (‘1) CO.5 3,y -/- II (2) sill ?!/I CITTa” da -{- 

0 
03 

-I- 
cs 

[C (2, /;)c0.@i (j/ + II) -:- 1, (I, b)sinh/;~/] cos x,.v tir /l/i 
. 
0 

(4) 

In this expression 

The arbitrary functions A(a), B(a), C(a, k), D(a, k) are determined 
from the boundary and initial conditions. Let us assume that 

‘p =. v (.r, y, I) when z- 7. G’, sill o/, cp=-0 when x<UOsinot (3 

If we insert +(x, y, t) into the second boundary condition (3) we ob- 

tain 

QA (a) == all (x) (Q = co2 / ,q) (/igsinh/tk - cl~~coshlil~) C (2, Ii) r: - /igIl (a, Ii) (6) 

and on satisfying condition (2) we obtain the integral equation 

_ mB (a) s -6 a cos a/J + Q sin ay] a da == v. 

Introduce new variables x = (a/Q)‘, y = - v and rewrite Equation (7) 
thus: 

where 
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I$(v)=O whenh<v<oo and --;>o<v<O; q(y)=i whenO<vv,(it (9) 

Using the well-known transformation 

with 8 = s/4, and bearing in mind the nature of the function z/r&) 
termine the arbitrary function 

u fa) = 2V,Q [Q (1 - co5 ah) - a sin ah] 
JICO (o” + Qs) 

On satisfying the first condition (3) we arrive at a different 
gral equation 

=‘a3 . 

Pi 
D (a, Ic) kwshkh cos 1i.Y elk _i- $ G (a) .+J (a) e-” 

1 
dr z.1 I) 

4) 0 

where 

we de- 

(11) 

inte- 

(12) 

Assuming the expression in square brackets to vanish, we introduce the 
new variable [ = X; bearing in mind the character of the function 
$6(x, y, t) and using the Fourier integral formula we obtain 

From this we have 

(13) 

NOW that all the arbitrary coefficients in (4) are determined and the 
velocity potential obtained, $(x, y, t) satisfies the initial conditions 
(1). 

If we differentiate the velocity potential 4(x, y, t) with respect to 
t, at II= Ue sin at we obtain the following: 
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0 0 

where 

,I. (Y) = [Q (1 - cos ah) - a sill rh], F (r, y) = &V (a) (a cos ajy -+- Q sin ay) 

f(a) = S (a) JI (a) / a 

In working out the double integral (14) use is made of the theorem of 

residues. We first of all integrate with respect to a, and we thus have 
poles on the complex plane lying on the imaginary axis at f iQ and f ik. 

Then on integrating with respect to k we have poles lying on the real 

axis at f Q and for cash kh = 0; on the imaginary axis at f inn /2h, 

where II = 1, 3, 5, . . . 00, and for the transcendental equation 
kg sinh kh - a2 cash kh = 0, we have two roots lying on the real axis at 

* YS and an infinite number of roots f iy,, where n = 1, 2, 3, . . . , along 
the imaginary axis. These can be found, using Fig. 1 as a guide, by 

successive approximation to any desired degree of accuracy. We solve the 
equation for the real roots y tanh y = Qh and for the imaginary roots 

y tanh y = - QH, where y = kh. 

Now, going to the calculations, we have 

CO 

\ 
fV(r)(Qcos31~+tlsinrh)~~ _ QxR,, ; __ .“I [Q (1 -coshkh) + k sinhkh] e- kh 

(IS! 

. (2’ + Q”) (~3 + P) ,L$ _ Q’ 2 
k (Q - k) I, 

and therefore 

cc 

ss f (a)smhky da dk 
X-(-J” _i. Q’) ($2 + k2)cos,,,& = + 

--coshkh) _t ksmtikh] e-iihsinhky dk + 

k2 (Q - k)coshkh 
0 0 

5; cc 
m 

f Qxnu 
i 

sinb k y dk n: 
-- (,l$ _ QB) kcos,.,,# -- 2 

s 

f (k) sin ky dk 

- /22 (k” + Qz) cos kh 
0 0 

i g R,sinhQy 
2 QcoshQh 

- (Ili, 

sin Cy sin C, 
hC(Q”+ C?)+ iH 

3 7r,=l, 3 

in these expressions 

Vl=l, 

j (k) = IV (k) (Q cos kh -I- 1; sin kh), _Y (k) = [Q (1 - cos kh) - k ain kh] 

R. 7:: (1 - (’ -““) L-Q”, I.’ ~~ ,,rx 2/t, (‘= Y I,~.-E /’ 2 

and also 

If we work out the second double integral in Formula (14) in the same 
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manner and substitute into it the results of the integration, we obtain 
for the case x = UQ sin at 

(18) 
acp C cos IT, (ZJ -j- h) / h] sin wt 
-- 
at - - 2voQh’o i! 1~; - (1 - Qh) Qh] 7n cos 7n 

- Tvo2 [I - 2 (1 - e -Qh) ,Qy cos2 ot 

n=1 

We then integrate $(z, y, t) with respect to y; for the case 
x = II, sinwt we have 

(191 

Here, on carrying out similar calculations for x = ile sin tit we have 

Denoting the liquid density by p and the 

(20) 

(21) 

Fig. 2. dynamic pressure by P*, we will have the formula 

Let us transform Formula (18) to the following form: 

Introduce the following notations:+y = &#A3 y, $t = dgi/dt, (for 
x= [I0 sinot). On combining (20) and (18) it is evident that if oh is 
large $y is a quantity of higher order. From the first term of the series 
we see that for a given amplitude of displacement U,, with increase in h 

or w, the dynamic ixessure in the liquid increases considerably because 
in this case yn + l/2 l;r (Fig. 1) and cos yn -+ 0, while Cn + 1, (R, - 
(Rs - 1)) + 1. It follows from this that the numerator maintains some 
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finite value while the denominator decreases rapidly, and thus the value 
of sbt increases rapidly, It should be noted that yn + na as n increases; 
therefore cos yn + 1 (Fig, l), and therefore the series which is con- 
tained in Formula (23) converges rapidly. This allows us to obtain the 
distribution of dynamic pressure P* along the dam easily, As an example, 
taking the first two terms in the summation in (23), we find a maximum 
value at the bottom of the dam at a fluid depth of 200 m, 

1) $5t = 96?20Uo(for o = 20), if U, > 0.021 m the dynamic pressure P*= 

2031~ is greater than the static pressure PO= 1960~. 

2) #, = 11502Ue (for 0 = lo), if U, & G.18 m, P* = 207Op. 

3) #, = 5756U0 (w= 6), if U. 2 0.35 m, P*A 2015~. 

If we compare (1) and (2) we see that by doubling 0, $t increases 
more than eightfold. 

We know from seismic laws that the last case approaches a destructive 
earthquake, Obviously, the supplementary dynamic pressure exceeds static 
because ,i3 = 103%, 150% and 158% when y = - h, - 0.5h and - 0. lh. respect- 
ively, where ,& denotes the nondimensional parameter P*/P”* 

In the second case, with El0 = 0.10 m, we approach the case of an in- 
tense earthquake and we have p = 59% (y = - h), p = 84% (y = - 0.5h), 
p = 92% (y = O.lh). With an increase in depth of liquid to 300 m we will 
have #t = 13~70~~ (w = 10) and 4, = 67~0~~ (o = 6). It is clear from this 
analysis that with a destructive earthquake and a strong earthquake the 
dynamic pressure of the liquid, caused by the vibration of the dam, 
exerts a great influence on the loading, especially at the higher dam 
sections. 

If we substitute (18). (20) and (24) into Formula (22) we see that the 
maximum pressure appears at the instant at which the vibrating dam, on 
reaching z = - U,, assumes max~mnm acceleration and starts moving in the 
opposite direction, i.e. to meet the direction of motion of the liquid, 
while the minimum pressure arises when the dam, on reaching z = U,, moves 
at maximum acceleration away from the liquid. 

Given values of h, o, cl0 and Ve, using Formulas (18) to (22)‘ it is 
easy to construct graphs of the maximum fluid-pressure distribution along 
the dam. For example, for the case h = 200 m, o = 10, Ue = 0.1 m and 
w = 6, U, = 0.36 m, we have constructed the graphs shown on Figs. 2 and 
3. respectively, the broken line representing static pressure and the 
full line the supplementary dynamic pressure; WorS It’,, are the maximum 
dam accelerations. In Fig. 3 it is evident that for this case with x = Ue 
the dam is subject to negative loading amounting to 4500 and 5500 kg/m2 
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(with y = - 200 and - 10 m, respectively), but this is less than atmo- 
spheric pressure, 1 x lo4 kg/m’, 

In order to avoid the development of destructive pressures in the 
liquid, or to avoid their maxima exceeding a certain limit set by the 
design, it is possible, for a given o. to lower the liquid depth h so 

that yn no longer tends to o/2 but remains at some value corresponding 
to our predetermined value. The relation between yn and w and h can be 
obtained from the equation yn tan y,, = - Qh to the requisite degree of 
accuracy. 

We now turn our attention to the liquid waves. The equation which de- 
termines the form or shape of the wave surface is as follows: 

1 acp (% 0, t) _ 4Tio i kc. q = - 7 

of (u) cos kX sin at da dk 
at - --$ 

(a2 $ Q”) (u” + k2) (kgsidkh - o%oshkh) ’ 

+ ‘3 w sin at “IV (“)e-ax & 

gn s a (a” + Q") 
0 

(24) 

Denoting the double integral by q and integrating first of all with 
respect to a, we obtain relation (15). Inserting (15) into (24) we 
arrive at 

QnRo - 
q = 8i ~, c J (k, 2, t) dk 

(k2 - Q2) (kg~kh - ~2co~~~k) - (25) 

--cc 

(1 --coshkh) + kstikh] emkh J (k, cc, t) 

k (k - Q) (kgsiahkh - dcoshkh) 

dlc 

0 

where 

Fig. 3. J (k, 5, :) = exp [i (ot +- kX)] i_ exp Ii (it - kX)] - 

- exp [A (ot - /c-Y)] - exp [-1 (at + kX)] 

On choosing the paths of integration shown in Fig. 1, where the thick 
full line is the path of the first integration (25) while the broken line 
is the path of the second integration, and the contours around the poles 
for the first components of .i(k, s, t) are shown in full line and for 
the latter two components indicated by arrows (this choice of integra- 
tion path avoids the wave going off from the dam to infinity (5 I), on 
making use of the theory of residues, we finally work out ?. On substitut- 
ing these results of integration in (24) we obtain (for the case t > 0) 

O” 
5 (2, t) = 2Uo Q” h2 2 

C, exp (-_m X/h) sin cot 

~ = 1 71% [Yr,’ - (1 - Qh) Qhl 

+ 2uo Qz hZ C, cos [(y,!h) (X - o ht/r,)] 

(‘rs - Qh) [rs2 + (1 - Qh) Q@osh 7, 
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where Cb = eys - Cs’, Cs’ = 2R,,ys (y, + Qh). Formula (26) demonstrates 
that immediately following the dam motion and close to it the level of 
the liquid rises and falls in a periodic manner, so that the advancing 
waves travel from the dam to infinity at a velocity ofoh/ys, the wave- 
length being 2nh/ys. 

Note. When determining the arbitrary function D(a, k) the function 
within the integral sign in (12) with respect to a was assumed zero. We 
know that this function is aperiodic (the argument a varies between 0 
and OO), and therefore despite the fact that the integral with respect to 
a is identically zero, the integrand need not be zero. Thus, let us re- 
present the second term in (4) as a single-valued integral in variable k. 

On satisfying the previous conditions we arrive at functions D(k) and 
C(k), which will be functions of k multiplied by some constants which, 
themse Ives, are integrals in a. For instance, 

D (k) = I (k) YL (CL) du 

If we insert these coefficients into $(x, y, Z) we obtain the previous 
result, therefore in this case the integrand is equal to zero. 

The author is very much indebted to Kh.A. Rakhmatulin and L.N. Sre- 
tenskii for their valuable advice, and also to S.S. Voit and N. I. Somov 
for their assistance. 
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